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Perceptual Quality Assessment for 3D
Triangle Mesh Based on Curvature

Lu Dong, Yuming Fang, Weisi Lin, Senior Member, IEEE, and Hock Soon Seah

Abstract—Triangle meshes are used in representation of
3D geometric models, and they are subject to various visual
distortions during geometrical processing and transmission.
In this study, we propose a novel objective quality assessment
method for 3D meshes based on curvature information; according
to characteristics of the human visual system (HVS), two new
components including visual masking and saturation effect are
designed for the proposed method. Besides, inspired by the fact
that the HVS is sensitive to structural information, we compute
the structure distortion of 3D meshes. We test the performance
of the proposed method on three publicly available databases of
3D mesh quality evaluation. We rotate among these databases
for parameter determination to demonstrate the robustness of
the proposed scheme. Experimental results demonstrate that
the proposed method can predict consistent results in terms of
correlation to the subjective scores across the databases.

Index Terms—Curvature, human visual system, quality
assessment, saturation effect, structure distortion, visual masking.

I. INTRODUCTION

ITH the advance of computer hardware and software, a

large number of visual contents have been created and
viewed in various applications such as entertainment (e.g. game,
movie), education, and medical fields. In this work, we investi-
gate issues on quality evaluation for 3D geometric models that
are mostly represented by triangle meshes. In various geometry
processing operations, such as compression and watermarking,
visual distortions are likely to be introduced into the original
3D meshes. Visual quality assessment of 3D meshes is critical
since such a criterion can be used in design and optimization of
graphic algorithms and systems.
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In this work, we focus on quality evaluation of 3D triangle
meshes based on curvature information, with formulation on
perceptual effects with visual masking, saturation and structure.
Curvature describes visual characteristics of 3D surfaces and
has been applied in existing quality evaluation methods [1]—[5].
In these methods, the quality of a distorted model is measured
through perceptual comparison in curvature between vertices
of a reference model and the distorted model. Distorted models
studied in this work are with the same connectivity as the corre-
sponding reference models, similar to some existing studies [1],
[6]-[8].

Since the Human Visual System (HVS) is the ultimate evalu-
ator of the majority of (if not all) produced 3D triangle meshes,
an objective quality assessment method which correlates well
with human perception needs to be designed. The HVS has de-
veloped unique characteristics in processing and understanding
of visual information. Existing studies have demonstrated that
incorporating perceptual properties of the HVS will benefit var-
ious 3D multimedia applications [9], [10], such as 3D model
transmission [11], 3D model watermarking [12], 3D mesh sim-
plification [13], and perceptual 3D rendering [14], [15]. The
characteristics of the HVS have been considered in existing
quality metrics for 3D meshes [1]-[5], [8]. Given a high-quality
reference mesh and a distorted mesh, features of the surface,
such as curvature [1] and dihedral angle [8], are calculated for
each vertex/face of the meshes. The differences between the fea-
tures of these two meshes are computed and modulated by per-
ceptual components such as visual masking component [3]-[5],
[8] and the saturation component [3] to predict the perceived
differences by human observers. For the distorted mesh, a final
quality score is obtained by integrating the perceived feature
differences on the surfaces.

Visual masking refers to the decrease of visibility of visual
signals with the presence of background signals [16]. In the con-
text of 3D mesh quality evaluation, visual masking indicates that
distortions are less visible on rough regions. Visual masking has
been applied in 3D mesh quality evaluation in existing methods
[3]1-[51, [8]. A roughness measure is computed from surface fea-
tures (curvature, dihedral angle, etc.), and objective distortions
are modulated by the roughness measure. The roughness mea-
sure used in [3] is the Laplacian of Gaussian curvature, which
is calculated in 1-ring (nearest) neighbors of a center vertex.
Roughness distortions are measured between a reference and
a distorted model, and the local roughness distortion is mod-
ulated by a power function of the roughness. The smoothness
measure defined in [8] is the dihedral angle between two adja-
cent triangles. The local difference in smoothness is modulated
by an exponential function of the smoothness. As a result, the
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objective distortion is amplified to a larger extent in faces with
larger dihedral angles. The roughness measure defined in [5] is
the Laplacian of the mean curvatures in 1-ring neighborhood of
avertex. In [5], the local perceptual distance between the curva-
ture tensors is computed as a product of the roughness and the
objective tensor difference.

For the visual masking components introduced above, the
roughness measures are computed from the nearest neighbors of
a vertex or face. The variation in a small neighborhood is usu-
ally not significant, and thus it may be inaccurate to determine
whether a region is rough or not solely based on the statistics ex-
tracted from a small neighborhood. The details will be analyzed
in Section III-C. To overcome these problems, the roughness
measure used in the visual masking module is calculated as the
Gaussian-weighted average of mean curvature in a local neigh-
borhood. Although the use of Gaussian-weighted averaged cur-
vature has been introduced in [1] for computation of feature dis-
tortion, it has not been used to modulate objective distortion in
a visual masking component. Further, inspired by the fact that
edges and rough regions exhibit different levels of masking ef-
fect [12], we assign different masking weights to rough regions
and edges in the visual masking computation. The details of the
component will be analyzed in Section III-C.

Saturation effect in visual quality evaluation was first intro-
duced by Lambrecht et al. [17]; this effect indicates that the
sensitivity of the HVS to distortions decreases at high distor-
tion levels. That is, when the distortion level is high, it would
be difficult for human observers to perceive further increase in
distortion level. Saturation effect has been considered in var-
ious quality evaluation methods for natural images and videos,
such as [18]-[20]. Saturation effect has first been considered in
quality evaluation of 3D meshes in [3], by limiting the calcu-
lated roughness to the range of [Th;, Thy]. In the metric [3],
the distortion of a distorted mesh is computed as the difference
of global roughness between the distorted mesh and a reference
mesh. Therefore, by clamping the roughness to the range of
[Th;, Thy], the upper threshold of the computed distortion level
is set as Thy, — Th;. However, setting an upper threshold of dis-
tortion cannot reflect the decrease in sensitivity to distortion at
high distortion levels. In this study, we model the saturation ef-
fect with an exponential function to reflect the decrease in sen-
sitivity to perceived distortion at high distortion levels. The de-
tails of the saturation module will be analyzed in Section I1I-D.

Besides the visual masking and saturation modules, we also
propose a method to compute the structure similarity between
a distorted model and a reference one. According to existing
studies in quality evaluation of natural images/videos [21], the
HVS is sensitive to structural information. To measure structural
distortion of a distorted 3D mesh, we detect strong edges and
measure the similarity of the edge strength between the distorted
and reference meshes.

The main contributions of this work include three aspects.
First, we design a new module for visual masking in quality
assessment of 3D meshes. A roughness measure is calculated as
the Gaussian-weighted average of mean curvature in a neigh-
borhood and a masking function on the roughness measure is
employed to decrease perceived distortion at rough regions.
Second, we design a new component in the proposed method
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to account for the saturation effect in the HVS. Different from
the existing saturation component [3], the proposed component
is able to simulate the decrease in sensitivity of the HVS to
distortions at high distortion levels. Third, we compute the
structure distortion of 3D meshes, to evaluate the distortion
imposed on the structural information of meshes.

We conduct experiments to demonstrate the performance of
the proposed method on three publicly available databases: the
LIRIS/EPFL general-purpose database [1], the LIRIS masking
database [12], and the UWB compression database [8]. Experi-
mental results demonstrate that the proposed method yields con-
sistent results across these databases in alignment with human
perception.

II. RELATED WORK

To predict human judgement on quality of 3D triangle
meshes, model-based perceptual quality assessment methods
[1]-[8], [22], [23] have been designed. Model-based methods
try to extract features from 3D geometrical models, and predict
the quality of 3D models based on the difference in features
between reference and distorted models. Detailed reviews of
model-based perceptual metrics can be referred to [24], [25].

According to existing studies, the classical geometric dis-
tances, like Hausdorff distance (HD) and Root Mean Square
Error (RMS) do not correlate well with human visual percep-
tion [25]. Thus different features have been explored in ex-
isting works. Karni and Gotsman [6] argued that a geometrical
Laplacian operator captures visual properties of surfaces, e.g.
smoothness. They formulated the difference between a refer-
ence model and a distorted model as the average of differences
in both vertex coordinates and Laplacian values between corre-
sponding vertices in the models. Later, Sorkine ez al. [22] im-
proved the method [6] by giving a greater weight to the Lapla-
cian values in the distortion measure. Bian et al. [7] proposed
a quality assessment metric based on the level of energy which
causes the deformation to the reference model, i.e. the strain en-
ergy. Corsini et al. [23] proposed a method based on the rough-
ness, which is a measure of the variation in surface vertices. Two
formulations of roughness measure were derived, and quality of
a distorted model was measured based on the per-vertex differ-
ence in roughness between the distorted and reference models.
Vasa and Rus [8] derived a quality assessment metric by com-
puting the differences in oriented dihedral angles between tri-
angles in 3D models.

In this study, we focus on investigating quality evaluation for
3D meshes based on curvature information, according to the
fact that the HVS is sensitive to curvature changes [26]. In fact,
curvature information has been successfully used in several ex-
isting methods [1]-[5]. Lavoué et al. [1] proposed a method
based on the computation of difference in mean curvature be-
tween vertices of the reference and distorted models. Lavoué [2]
later extended the work [1] to handle changed connectivity of
distorted models. Wang et al. [3] computed the Laplacian of dis-
crete Gaussian curvature for each vertex on a model, and derived
a global roughness measure by adding the Laplacian values. The
quality of a model is measured through perceptual comparison
between the global roughness measure of the model and that of
the reference model. The studies [4], [5S] employ both curvature
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Fig. 1. Pipeline of the proposed 3D mesh quality assessment method.
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Fig. 2. Mean curvature describes the visual characteristics of 3D models. (a) Reference bunny model. (b) Mean curvature map of the object in (a). (c) Distorted
model after quantization of coordinates. (d) Mean curvature map of the object in (c).

amplitude and principal curvature directions for quality evalua-
tion of 3D meshes.

III. THE PROPOSED METHOD

A. Overview

The pipeline of the proposed method is shown in Fig. 1.
The proposed method relies on both roughness comparison and
structure comparison. Given a reference model and a distorted
model, the proposed method calculates the mean curvature
value (Kmean) for each vertex in the models, and then computes
the roughness of the vertex as a Gaussian-weighted average
of mean curvature values (Kmean) in the neighborhood of the
vertex. After that, the proposed method computes the difference
in roughness (Kyean) between each pair of vertices from these
two models. The computed roughness difference (variation) is
then modulated by visual masking and saturation components.
Additionally, the method computes the structure similarity be-
tween these two models. Finally, a quality score of the distorted
mesh is derived through pooling the roughness similarity score
and the structure similarity score. In image quality evaluation
methods, pooling refers to the process integrating the quality
(distortion) values obtained from different components into a
final quality (distortion) score.

B. Computation of Roughness Difference

Intuitively, curvature describes the deviation amount of a sur-
face from being flat. Discrete curvature has been considered in
several existing methods of 3D mesh quality assessment [ 1]-[5],
due to its ability to describe the visual characteristics of 3D
meshes [1]. Fig. 2 illustrates two mean curvature maps for a ref-
erence Bunny model, and a distorted Bunny model. The model
in Fig. 2(c) is created by applying coordinate quantization on the
original model in Fig. 2(a). In Fig. 2(b) and (d), warmer colors
indicate higher mean curvature values. After the quantization,
the surface of the Bunny becomes rougher from (a) to (c), and
the mean curvature map becomes noisier from (b) to (d). We

can see that mean curvature information is variant to surface
roughness.

3D mesh is a piecewise-linear approximation of continuous
surface, and there are various definitions of curvature tensor on
a mesh [27]. Similar as in [2], we adopt the method proposed
by Alliez et al. [28], to estimate the curvature tensor at each
vertex of the mesh. The method estimates the curvature tensor
on a geodesic disk neighborhood around each vertex, and yields
stable results independent of the sampling density of the model
[2]. The maximum curvature £max and the minimum curvature
Kmin are calculated from the curvature tensor. The mean curva-
ture Kmean 18 computed as (Kmax + Kmin ) /2.

For each vertex, a roughness measure is computed as the
Gaussian-weighted average of mean curvature (Kmean) in a
spherical neighborhood around the vertex [2]. The Gaussian-
weighted average of mean curvature Fmean (v) of vertex v is
computed as

>

exp (2w — v][*/7*) - Kmean ()
v €8(v)

2

Vm €S (V)

"%mean(/u) 9 2
exp (—2/[vm — v[*/7?)

(1

where v, is a vertex in the spherical neighborhood S of ;
Kmean(Vm) is the mean curvature value of the vertex; +y is the
radius of the neighborhood; ||v,, — v|| is the Euclidean distance
between vertex v, and v. Here we compute the roughness mea-
sure in a spherical neighborhood instead of a 1-ring neighbor-
hood for the reason that curvature computed in a larger neigh-
borhood is a better indicator of surface roughness, which will
be demonstrated with an example in Fig. 4. The difference in
roughness between a vertex in a distorted model and the corre-
sponding vertex in a reference model is calculated as follows:

Fémean v ) — '%mean v
_ |Rmean(v]) (v5)]

= 2

Dg(v],v§)

2
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Fig.3. Example of visual masking effect. (a) Original LionVase model. (b) Dis-
torted mesh created by adding medium-level noise in smooth regions. (c) Dis-
torted mesh created by adding high-level noise in rough regions.

where v;l is a vertex in the distorted model Mg; v; is the cor-

responding vertex in the reference model M,.; Kyean (vf) and
Fimean(vf) is the roughness of ¢} and 1!3-1, respectively; | - | com-
putes the absolute value; 'y is a normalizing constant, which
corresponds to the dynamic range of the roughness value.

C. Visual Masking Formulation

Visual masking is an important characteristic of the HVS.
In the context of quality assessment of 3D meshes, visual
masking indicates that artifacts become less visible on rough
regions to human observers. Fig. 3 illustrates an example
of visual masking effect. Fig. 3(a) is the original LionVase
model and two examples of smooth region and rough re-
gion in this model are highlighted. Fig. 3(b) is a distorted
model created by adding medium-level noise in smooth re-
gions, while Fig. 3(c) is a distorted model created by adding
high-level noise in rough regions. Although the objective level
of distortion in Fig. 3(c) (high-level noise) is higher than that
in Fig. 3(b) (medium-level noise), the perceived quality in
Fig. 3(c) is better, since noise in the mane of the Lion is less
annoying than noise in smooth regions of the face.

To take the visual masking effect into account for quality
assessment, we try to mask the distortion in rough regions.
Existing methods [3]-[5], [8] calculate the roughness measure
based on statistics extracted from a 1-ring neighborhood of
a vertex or triangle. However, there are a large number of
vertices in a typical 3D model and thus vertex features, such as
geometry coordinate, curvature, or dihedral angle, do not vary
greatly in the 1-ring neighborhood. Due to the small variation,
it is difficult to determine whether a local region is rough or
not by the variation. Fig. 4(a) shows the mean curvature map
for the LionVase model, calculated in 1-ring neighborhood of
each vertex, and warmer colors indicate higher mean curvature
values. As can be observed from Fig. 4(a), although the vertices
in the highlighted rough region exhibit higher curvature values
than the vertices in the highlighted smooth region, vertices are
with low curvature values (dark blue colors). Some vertices in
the rough region (e.g. the pixels highlighted with the circle in
the rough region) have similar curvature values as vertices in
the smooth region, and the masking potential of these vertices
will be under-estimated.
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Fig. 4. Mean curvature maps for the LionVase model (a) calculated in 1-ring
neighborhood of each vertex and (b) calculated in a larger neighborhood as (1).

As mentioned in Section III-B, the roughness measure is ob-
tained by computing the average curvature (Xmean) of vertices
in a large spherical neighborhood of each vertex. The radius
is set to 0.2% of the maximum length of the bounding box of
the model. A proper choice of radius also depends on the dis-
play resolution, viewing distance and sampling density at dif-
ferent parts of each model. For example, the local regions of the
mane in the LionVase model from Fig. 3(a) are considered as
rough from a large viewing distance, but they may be consid-
ered as smooth if the viewing distance is sufficiently small to
view every vertex clearly. In this work, the models are shown
on a 19-inch LCD monitor with display resolution at 1440 x 900
pixels, and we set the radius to 0.2% empirically. An example
of the curvature map is illustrated in Fig. 4(b). From this figure,
we can see that the vertices in the rough regions are with high
values (orange colors), while vertices in the smooth regions are
with lower values (dark blue colors). Compared with Fig. 4(a),
rough region can be better distinguished from smooth regions
in Fig. 4(b).

To mask the roughness variation in rough regions, we mul-
tiply the roughness variation Dg(v!, U;i) in (2) by a masking
function. The visual masking tuned roughness difference
Dasking (V] v9) is calculated as follows:

D r ,d r d Rmean(l';)Q
masking(vi :Uj) = DR(’U.i s Uj) - exp o

where ¢ is a parameter of the Gaussian kernel. With the func-
tion, the roughness variation in smooth regions will not be mod-
ified significantly (masking coefficient is near the value “17),
to account for the weak masking ability of these vertices. The
computed roughness variation in rough regions will be reduced
to a larger extent (masking coefficient is significantly smaller
than the value “1”), to account for the strong masking ability of
these vertices.

According to existing studies in quality assessment of 3D
meshes [12] and natural images/videos [29], rough regions
in 3D meshes (or textural regions in natural images) exhibit
stronger visual masking effect than edges. Due to the entropy
masking effect [30], the visibility to a visual signal decreases
when the masking signal is unfamiliar or uncertain to human
eyes. Rough regions in 3D meshes are less predictable than
edges, and thus have stronger visual masking effect. Therefore,
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(a) (b)

Fig. 5. Maximum curvature map of the Venus model. (a) Reference Venus
model. (b) Maximum curvature map of the Venus model.

to take the entropy masking property into account, we assign
different visual masking weights to rough regions and edges in
the proposed visual masking module.

Since sharp edges are with high maximum curvature (K42 )
values, we detect vertices with high maximum curvature values.
An example of the maximum curvature map of the Venus model
is illustrated in Fig. 5(b). In this figure, sharp edges are with
warmer colors (higher k.4, values). In the proposed compo-
nent, the o value in (3) is determined by whether a vertex be-
longs to edges or not

aton) = { 20

Op - We,

Fmax (V) < T

Fmax(v]) > Ty @)
where vertices which satisfy fpyax(v]) > T, are detected as
edge vertices, while vertices which satisfy kmax(v]) < T, are
classified as non-edge vertices. Note that non-edge vertices in-
clude both rough vertices and smooth vertices. However, for a
smooth vertex, the weighting term, exp(— "“30#), in (3) is
nearly the value “1” since Zmean (v]) is nearly zero. Therefore,
the condition kmax(v]) < T, affects only the weighting terms
of rough regions. In (4), o, is a constant; w, is the weight for
rough vertices and w, is the weight for edge vertices; w, is set to
be smaller than w, so that the masking effect in rough vertices
is stronger than edges, since a smaller ¢ induces a shaper slope
in the Gaussian function. ¢, controls the shape of the masking
function. When ¢, is small, the masking coefficient decreases
rapidly from 1 to 0 as the roughness value increases. When o,
is large, the masking effect assigned to rough regions is weak.
In an extreme case, when ¢, approaches positive infinity, the re-
sult is the same as the case without the visual masking module.

With the module, distortions in rough regions will be masked.
For the two models in Fig. 3(b) and (c), the roughness dif-
ferences, and the modulated roughness differences are listed
in Table I. As shown in Table I, the roughness difference of
Fig. 3(b) is smaller than that of Fig. 3(c). That means the com-
puted distortion level of Fig. 3(b) is lower than that of Fig. 3(c),
and that is contradictory to the visual comparison result that
(b) has worse visual quality than (c). With the visual masking
module, the computed roughness difference of Fig. 3(b) is larger
than that of Fig. 3(c) and this result is consistent with the visual
comparison result.
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TABLE 1
ROUGHNESS DIFFERENCE AND MODULATED ROUGHNESS
DIFFERENCE OF TWO DISTORTED MODELS

Type Fig. 3(b) | Fig. 3(c)
Roughness Difference 0.285 0.394
Modulated Roughness Difference 0.138 0.047

D. Saturation Effect Modulation

Saturation effect indicates that sensitivity to perceived distor-
tion decreases at high distortion levels [3], [17], [31]. We pro-
vide an example of the saturation effect in Fig. 6. This figure in-
cludes four distorted Bunny models created by adding uniform
noise of different intensities into the reference model, with the
MEPP software [2]. The intensity level is relative to the average
distance from vertices to mesh center, and a higher intensity
level induces larger distortion in the models. Compared with the
reference model in Fig. 2(a), the distorted model in Fig. 6(a) ex-
hibits high visual quality, while the model in Fig. 6(b) exhibits
worse visual quality, and noise is visible on the mesh surface.
The models in Fig. 6(c) and (d) exhibit bad visual quality, and
the perceived noise levels are high in the models. Although the
objective difference in distortion levels between the models in
Fig. 6(a) and Fig. 6(b) is the same as the difference in distortion
levels between the models in Fig. 6(c) and Fig. 6(d), observers
are likely to assign significantly different scores to the models
in Fig. 6(a) and Fig. 6(b), but to assign similar scores to the
models in Fig. 6(c) and Fig. 6(d), since observers are not sensi-
tive to slight differences at very bad quality conditions.

We model the saturation effect by an exponential formula as
Fig. 7. The mapped curvature difference Dg, is calculated as
follows:

*Dmas in, ’U{, Ud
Dsat(v{,vf) =1—exp ( kﬁg( J)) 5)

where 3 is the parameter to control the shape of the saturation
function. Fig. 8 illustrates the shapes of the saturation functions
with different 5. In extreme cases, when 3 approaches 0, the
objective distortion values are all mapped to value “1”’; when
3 approaches positive infinity, the objective distortion values
are all mapped to value “0”. Thus with the increase of 3, the
performance increases first but decreases later.

To illustrate how the plot in Fig. 7 simulates the saturation
effect, we show four distorted models, My, M;, Mz and
My, of a same reference model, as an example. In Fig. 7,
D(M1), D(M2), D(M3) and D(M4) denote the roughness
difference (distortion level) for distorted models Mq, Mo,
Ms and My, respectively, without the saturation module.
From this figure, A5 is with larger distortion level than
My (i.e. D(M3) > D(M1)). AD(M;, M,) is the differ-
ence in distortion level between M, and M»; AD(Mjz, My)
is the difference in distortion level between Mz and My,
AD(M;, Ms) = AD(Ms, My). ADg, (M, Ms) is the differ-
ence in distortion level between M7 and M- with the saturation
module; ADgy(Ms, My) is the difference in distortion level
between M3 and Ay with the saturation module. We can see
that ADgy (Msz, My) < ADga (M, Ms), which means the
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(2) (b)

(© (d)

Fig. 6. Example on saturation effect. Distorted bunny models are created by adding uniform noise with intensity of (a) 0.001, (b) 0.004, (c) 0.007, and (d) 0.010

into the reference bunny model shown in Fig. 2(a).
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Fig. 7. Saturation effect modulation function.
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Fig. 8. Shape of the saturation function with different 3.

sensitivity to perceived distortion decreases at high distortion
levels.

With the saturation module, a perceptual roughness similarity
value between a reference model A" and a distortion model A/ ¢
is calculated as

1
r oagdy __ ro..d
SR(M , M )71*W'2Dsat(viav3‘) (6)

where |[M"| = |M¢9| is the total number of vertices in each
model.

Note that the output of the roughness comparison and the
structure comparison is a value. A distortion map can be ex-
tracted as an intermediate result after applying the saturation
module. Fig. 9 shows the roughness distortion maps of the Ar-
madillo, Dyno, Venus and RockerArm models. We can see that
regions with higher degradation are detected with higher distor-
tion values.

E. Structure Distortion

According to existing studies in quality evaluation of natural
images [20], [21], the HVS is sensitive to structural distortion.
A typical distortion which degrades the structure of 3D meshes
is the smoothing or blurring distortion. The blur of structure is
annoying to human observers. Roughness comparison cannot
well measure the structural distortion, since the distortion oc-
curs mostly on edges of the meshes, and the roughness does
not change greatly for most non-edge vertices. To capture struc-
tural distortion of 3D meshes, we detect strong edges of the
meshes and compare the similarity between the edge strength
of the strong edges in these two meshes. Since sharp edges are
with high maximum curvature (xmax ) values, we detect vertices
with high maximum curvature values and include these vertices
in computation of structure distortion. To compute the structure
similarity, we compute the similarity in xy,,x values between
vertices with high xnax values in the reference model and the
corresponding vertices in the distorted model. More specifically,
the structure similarity is computed as follows:

Sg(M™, M%)
Zﬁmax(vz)ﬁmax(vjd') + CZ

1
- N Z 12

® (0I)>T, max('vzr) + H'Iznax('v?) + CZ
max (V; ”

)

where 7). is a parameter determining which vertices are included
in the computation of structure similarity; /N is the number of
vertices, which satisfy &max(v]) > T} in the reference model;
(5 is a small constant to avoid the denominator being zero (e.g.
Cy=1077).

Fig. 10 shows a noise distorted model (b) and a smoothing
distorted model (c). We can see that the smoothing distorted
model exhibits larger structure distortion than the noise dis-
torted model, since the edges in (c) are severely blurred. We
compute the roughness similarity and the structure similarity
between the distorted model and the reference model, and the
results are shown in Table II. In the roughness comparison, the
similarity of the noise distorted model (b) is similar to that of the
smoothing distorted model (c). While in the structure compar-
ison, the similarity of the noise distorted model (b) is larger than
that of the smoothing distorted model (c). This example shows
that the proposed computation of structure similarity is able to
measure the distortion imposed on the structure information of
3D meshes better than the roughness similarity.

In the proposed method, a final quality score is computed
from the structure similarity value Ss and the perceptual
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Fig. 9. Roughness distortion maps. (a) Armadillo (b) Dyno. (c) Venus. (d) RockerArm. Warmer colors represent higher values.

() (b) (©)

Fig. 10. Noise distorted and smoothing distorted models of the Venus. (a) Orig-
inal Venus model. (b) A distorted model created by adding random noise. (¢) A
distorted model created by applying Taubin smoothing with step number at 20.

TABLE 11
ROUGHNESS SIMILARITY AND STRUCTURE SIMILARITY BETWEEN
TwO DISTORTED MODELS AND THE REFERENCE MODEL

Mesh in Fig. 10(b)
0.865
0.938

Mesh in Fig. 10(c)
0.860
0.746

Roughness Similarity
Structure Similarity

roughness similarity value Sg by using the pooling function as
follows:

Spool(MT, M%) = (1 —a) - Sp(M™, M%) +a - Ss(M", M%)
(8)

where « is a weighting parameter. A smaller a gives more em-
phasis on the roughness distortion.

IV. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of the pro-
posed quality assessment method on three publicly available
databases: the LIRIS/EPFL general-purpose database [1], the
LIRIS masking database [12], and the UWB compression
database [8]. We determine the parameters of the proposed

method by one database, and use the same parameters in the
other two databases for validation. We rotate this parameter de-
termination and validation process for different databases; i.e.
using the LIRIS/EPFL general-purpose database for parameter
determination and the other two databases for validation; then
using the LIRIS masking database and the UWB compression
database for parameter determination. The performance of the
proposed method is measured by computing the average perfor-
mance from using these three sets of parameters. We compare
the performance of the proposed method with relevant existing
quality assessment methods including the state-of-the-art ones,
in terms of accuracy and robustness. These methods include the
Hausdorff distance (HD), RMS (root mean square error), GL1
[6], GL2 [22], SF [7], 3DWPMI [23], 3DWPM2 [23], MSDM
[1], MSDM2 [2], FMPD [3], DAME [8], and TPDM [5].

A. Databases

Here we give a brief introduction of the three databases used
in the experiments. The LIRIS/EPFL general-purpose database
[1] includes 4 reference models, and 84 distorted models (21
distorted models for each reference model). Two types of distor-
tions are included in the database: random noise and smoothing
distortion, to simulate various artifacts from geometry pro-
cessing operations, such as compression and simplification. A
score between 0 (best) and 10 (worst) is given to each distorted
model by observers, and a normalized MOS is computed for
each model by averaging the scores given by observers. The
LIRIS masking database [12] includes 4 reference models,
and 24 distorted models (6 distorted models for each reference
model). The distorted models in the database are created by
adding random noise with different strength in rough or smooth
regions of the reference models. The database is built to test
the visual masking effect in quality assessment of 3D meshes.
A normalized score between 0 (worst) and 4 (best) is assigned
to each distorted model. The UWB compression database [8]
includes 5 reference models, and 63 distorted models (12 or
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Fig. 11. Scatter plots of MOSs versus the predicted scores from the proposed
database. (b) LIRIS masking database. (c) Bunny model. (d) James model. (e) Je:

13 distorted models for each reference model). Thirteen types
of artificial distortions related with compression are applied on
the reference models. Observers sorted the distorted models of
each reference model according to the perceived quality, and
a score between 0 (reference level) and 1 (worst) is computed
based on the sorting results. Note that there is no correlation
between the scores given to distorted models corresponding to
different reference models, due to the procedure of the subjec-
tive tests. For example, a distorted model of Bunny with score
“1” does not have similar visual quality as a distorted model
of Jessi with score “1”. Therefore, the performance of all the
test methods on the UWB Compression Database is derived by
averaging the performance on the 5 model sets.

B. Accuracy and Robustness Evaluation

Fig. 11 illustrates the scatter plots of the proposed quality
assessment method on these three databases. The parameters
used in the experiments are determined by the LIRIS/EPFL gen-
eral-purpose database, and the parameters are set as 0, = 40,

model for the meshes in the three databases. (a) LIRIS/EPFL general-purpose
ssi model. (f) Nissan model. (g) Helix model in the UWB compression database.

w, = 1,w, = 1.2, 8 = 0.5, and &« = 0.1. The psychome-
tric function in each plot maps the computed quality scores to
the MOSs. It has been employed by existing quality assessment
methods [5], [20], [32] to remove any nonlinearity from the sub-
jective viewing tests. We employed the following function:

1 1
f(8)=w- (5 C1+exp(va- (S —13))

> + vy 8+ vy
©)

where v, Vs, V3, V4, and v are parameters to be fitted by min-
imizing the sum of squared differences between the mapped
quality score and the MOSs. As can be observed from the
scatter plots, the proposed method performs well on these three
databases. The computed quality scores exhibit the similar
distributions as the MOSs in most cases.

To compare the performance of the quality assessment
methods with other related ones, two measures are used in this
study. The Pearson linear correlation coefficient (r,) is em-
ployed to measure the prediction accuracy, and the Spearman
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TABLE I1I
CORRELATION COEFFICIENTS SPEARMAN 7, AND PEARSON 7, (%) OF THE PROPOSED OBJECTIVE METRIC ON TEST DATABASES

General Purpose Masking Compression
Spearman(rs) | Pearson(r,) | Spearman(rs) | Pearson(rp) | Spearman(rs) | Pearson(rp)
Experiment 1 | 87.0 88.1 91.1 91.9 84.1 96.4
Experiment 2 | 86.4 87.5 93.3 93.0 84.2 96.2
Experiment 3 | 86.3 87.4 93.0 92.9 84.2 96.2
Average 86.6 87.7 92.5 92.6 84.2 96.3
TABLE IV

CORRELATION COEFFICIENTS SPEARMAN 7, AND PEARSON 7, (%) OF DIFFERENT OBJECTIVE METRICS ON TEST DATABASES

General Purpose Masking Compression
Spearman(rs) | Pearson(r,) | Spearman(rs) | Pearson(rp) | Spearman(rs) | Pearson(rp)
Hausdorff | 13.8 11.4 26.6 20.2 24.5 14
RMS 26.8 28.1 48.8 41.2 52 49
GL1 33.1 35.5 42 39.6 66.9 70.6
GL2 39.3 42.4 40.1 38.3 73.9 76.1
SF 15.7 7 38.6 15.5 574 34.8
3DWPMI1 | 69.3 61.8 29.4 31.9 81.9 84.1
3DWPM2 | 49 49.6 37.4 42.7 80.9 82.3
MSDM 73.9 75 65.2 69.2 83.1 91.5
MSDM2 80.4 81.4 89.6 87.3 78 89.3
FMPD 81.9 83.5 80.2 80.8 81.8 88.8
DAME 76.6 75.2 68.1 58.6 85.6 93.5
TPDM 89.6 86.2 90 88.6 82.9 91.5
Proposed 86.6 87.7 92.5 92.6 84.2 96.3
TABLE V

CORRELATION COEFFICIENTS SPEARMAN 7; AND PEARSON 7, (%) OF DIFFERENT MODULES ON TEST DATABASES

General Purpose Masking Compression
Spearman | Pearson | Spearman | Pearson | Spearman | Pearson

Roughness Difference Alone
without Modulation 78.2 81.3 60.7 65.8 83.0 95.7
Roughness Difference Alone
with Modulation 86.6 87.7 92.0 923 84.2 96.2
Structure Distortion Alone 26.0 26.3 13.8 52 80.5 93.0
Modulated Roughness Difference
+ Structure Distortion 87.0 88.1 91.1 91.9 84.1 96.4

rank-order correlation coefficient (r5) is employed to measure
the prediction monotonicity. The Spearman rank-order correla-
tion coefficient depends only on the rank of the objective scores
of the models; if the rank of objective scores is similar as the
rank of MOSs, a high value will be obtained, regardless of the
distance between the objective score and the corresponding
MOS. For both the criteria, a higher value indicates better
prediction performance.

Table III shows the values of rs and r, from the proposed
metric on the three databases by using three different sets of
parameters. In Experiment 1, The parameters are obtained from
the LIRIS/EPFL general-purpose database; in Experiment 2, the
parameters are obtained from the LIRIS masking database; in
Experiment 3, the parameters are obtained from the UWB com-
pression database. Note that there are two performance mea-
sures, s and r,, and we determine the parameters by maxi-
mizing the r, values in the experiments. The performance of
the proposed method is measured by computing the average
and r, values.

The values of r, and 7, from the test metrics on the three
databases are listed in Table IV, where the two highest cor-
relation coefficients have been highlighted in boldface. The
proposed method has the highest r; and r, values on the LIRIS

masking database (Masking). The LIRIS masking database
is designed to evaluate the visual masking effect in quality
assessment of 3D meshes. The good performance of the
proposed method in the database confirms the effectiveness
of the proposed visual masking module in this work. The
proposed method has comparable performance to TPDM [5]
on the LIRIS/EPFL general-purpose database (General Pur-
pose), and to DAME [8] on the UWB compression database
(Compression).

The TPDM [5] performs the best or close to the best on the
LIRIS/EPFL general-purpose database and the LIRIS masking
database, but is slightly worse than the best two methods on the
UWB compression database. The DAME [8] has the highest r,
value on the UWB compression database, but it is poor on the
LIRIS/EPFL general-purpose database and the LIRIS masking
database. Overall, the proposed method gives more consistent
performance across the three databases.

Table V shows the values of r, and 7, from the proposed
metric on the three databases by using the roughness difference
alone (with/without the masking and saturation modulation),
the structure distortion alone, and the modulated roughness dif-
ference together with the structure distortion. The parameters
used in the experiments are determined by the LIRIS/EPFL
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general-purpose database, the same as the parameters used in
Fig. 11.

Table V shows that the roughness difference exhibits high
correlation with the MOSs, and by integrating the masking and
saturation modules, the correlation between the roughness dif-
ference and the MOSs increases. We also find that the struc-
ture distortion alone does not correlate well with the MOSs in
the databases. The reasons include two aspects. First, we use
a simple formulation of the structure distortion in the proposed
method. The proposed method computes the structure distortion
by detecting strong edges and computing the similarity of the
edge strength between the distorted and reference meshes, and
this formulation may not be able to measure the structure distor-
tion accurately. Second, the structure distortion is not the major
distortion occurring on the meshes of the test databases. On the
LIRIS masking database, random noise is added to smooth or
rough regions of the 3D meshes, and the structure information
is not severely degraded. Thus, the structure distortion can not
measure the quality of these noise-distorted meshes. Further, the
combination of the structure distortion and the roughness differ-
ence does not exhibit higher correlation with the MOSs than the
roughness difference alone. On the LIRIS/EPFL general-pur-
pose and the UWB compression databases, the types of distor-
tion include mesh smoothing and compression, and these types
of distortion mainly degrade the structure information of 3D
meshes. Thus, the structure distortion yields better performance
on the LIRIS/EPFL general-purpose and the UWB compression
databases. The combination of the structure distortion and the
roughness difference also gives slightly better performance than
the roughness difference alone on these two database. In sum-
mary, the proposed masking and saturation modulation is able to
improve the performance of the roughness difference. Besides,
it is possible to improve the performance of the quality metric
by integrating the structure distortion with the roughness differ-
ence, but to achieve this goal, a more accurate formulation of
the structure distortion needs to be designed in the future work.

V. CONCLUSION

We have designed and implemented a new method to assess
the perceptual quality of 3D triangle meshes. Given a distorted
3D model and a reference one, we compute a roughness mea-
sure by using mean curvature and compare the roughness differ-
ence between each pair of corresponding vertices. The rough-
ness variation is modulated with a visual masking module and
a saturation module. With the visual masking module, com-
puted distortion in rough vertices are masked. With the satu-
ration module, high-level roughness distortion decreases to ac-
count for the decrease in sensitivity of the HVS at high distortion
levels. The structure similarity between two models is computed
based on the maximum curvature between edge vertices of the
two models. A quality score is derived as the integration of the
perceptually modulated roughness distortion and the structure
similarity. Compared with relevant existing quality assessment
methods for 3D triangle meshes, the proposed method yields
more consistent results with subjective scores on three publicly
available databases.
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The limitation of the current stage of development for the
proposed method is that it is only used for geometrical pro-
cessing that preserves mesh connectivity. Extending the pro-
posed method to distortions which affect the vertex connec-
tivity, such as model simplification, will be a possible direction
of future work. Another possible extension is to combine vi-
sual attention in quality metrics for 3D meshes, and further psy-
chophysical experiments are needed before we integrate visual
attention into a quality metric.
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